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A computer algorithm was developed to determine if an acoustic transmitter can .

. . ¢

be localized based on estimates of local angles of arrival of acoustic signals incident . B
upon a receive planar sonar array, knowledge of the deterministic effects of the ocean “'
. \]

on sound propagation, and local sound-speed profiles of the ocean. The algorithm was '
designed to determine azimuthal and elevation,/depression angles to the transmitter as ‘f
well as computing the depth, range, cross range, and line-of-sight range separations B!

between the transmitter and the receive array. The algorithm utilizes ray acoustics and
model-based phase weights to determine the transmitter’s location relative to the '.:,
- . . . . . . - ‘.

receive array’'s position. As written, the algorithm is capable of solving localization }:“
problems in which the transmitter and receiver are in the same gradient of the local :‘.}
sound-speed profile, provided that the range from transmitter to receiver is not so great »
. - . . * F

that the acoustic signal passes through a turning point prior to reaching the receive 0::
)

array. The results indicate that the method proposed is viable for the class of problems ::
. . . . . ..

for which it was designed, and accuracies on the order of 0.1 meters are obtained for )
line-of-sight ranges on the order of several kilometers. The angles calculated by the g
” algorithm are all accurate to within 0.005 degrees. ..:‘
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I. INTRODUCTION !

This thesis constitutes one part of a long range project to develop new sonar

signal processing algorithms capable of rapidly solving sonar localization problems. At X
) present, the solution of the sonar fire control problem can require a considerahly
Y longer time than that required for most other types of fire control problems. The long b
t time required to achieve a solution can cause a significant degradation in a ship’s :
: ability to avoid counterdetection, due to continuously decreasing range to the target Ry
' during problem solution. A sonar system capable of rapid target localization without ..
, requiring own ship’s maneuvers would greatly enhance the capabilities of our ships, ‘
‘ and allow for weapon firings at longer ranges. !
The research question investigated in this thesis is whether or not it is possible ::
' to develop an algorithm which utilizes estimates of the local angles of arrival of |
; acoustic signals incident upon a planar sonar array, knowledge of the deterministic ;
’ effects of the ocean medium on sound propagation, and local sound-speed profiles of Y
N the ocean, to locate an acoustic transmitter, both in azimuthal angle and ‘)
: elevation’depression angle. In addition the model-based localization algorithm s
S (hereafter referred to as the ‘localization algorithm’) was designed to provide the range, '.:
K - depth, cross range, and line-of-sight range between the acoustic transmitter and the ‘
Y receive array.
' Ray acoustics provides methods of determining ranges and propagation angles ~
) for transmission of acoustic signals in inhomogeneous media [Ref. 1: sect. 6.2]. The 1"\-
‘ deterministic effects of the inhomogeneous ocean medium on acoustic signals are well :
) known. From a transmitter in a known position, it is possible to develop ray traces \
i that illustrate the propagation of acoustic signals through the ocean medium. The -
intent here is to use this knowledge of sound propagation to find the transmitter’s ‘
; location based on the estimated angles of arrival at a receive array. The estimates of N
the local angles of arrival are obtained from a frequency domain adaptive beamforming -:.
algorithm developed by Ziomek and Chan [Ref. 2|. This algorithm performs frequency N
y domain adaptive beamforming for planar sonar arrays using a modified complex LMS r'
,. adaptive algorithm. The algorithm generates estimates of the local angles of arrival. o~
X namely, the azimuthal and elevation depression angles, of incoming acoustic signals. "
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However, in a real ocean environment, these local angles of arrival do not reflect the hy!
true line-of-sight angles to the target. ::‘::
The localization algorithm uses the angle-of-arrival estimates, plus typical b
sound-speed profiles that are normally available to ships. In addition, it was found :::
that one more piece of information is required to localize the target. This information ' :f;
is a model-based phase weight which is part of a model-based signal processing ':;
algorithm developed by Ziomek and Blount [Ref. 3]. These phase weights are used to : "
“correct for deterministic, ocean medium, phase effects due to ray bending as a signal .,‘t
propagates in the inhomogeneous ocean medium whose index of refraction (sound- t
speed profile) is a function of depth.” [Ref. 3] The phase weights were originally :‘\-'
developed as part of an underwater acoustic communication problem in which receiver b
and transmitter locations were known. The form of the phase weights used will be ';:.‘
presented in Chapter II. :,:n‘
For the problem investigated in this thesis, transmitter location is unknown a :'.“
priori and, therefore, the model-based phase weights cannot be determined in exactly "."
the same manner as was done in the algorithm developed by Ziomek and Blount Ry
[Ref. 3]. The usefulness of the localization algorithm developed in this thesis is based "\
on the availability of the model-based phase weights. The research done here is a o
feasibility study of the ability to localize an acoustic transmitter if the phase weights .o
were available. The development of an algorithm to generate the model-based phase .,‘
weights was not the subject of this research. "1'.
The localization algorithm is limited to solving a particular class of problems. R
The localization algorithm is designed to accommodate vertical variations in sound- i
speed profile or, sound-speed profiles that are functions of depth only. Horizontal or :
range variations in sound-speed profile were not examined in this initial study because 3
they constitute only a relatively small portion of ocean areas. Additionally, the '
transmitter and receiver are assumed to both be within the same sound-speed gradient. )
Finally, all case studies were conducted based on the assumption that the receiver was :::
in close enough proximity to the transmitter so that the acoustic signal had not passed (_:;
through a turning point prior to reaching the receiver. A turning point is defined as j::-"
the point along a ray path at which the angle of propagation is 90 degrees with respect
to the positive Y, or depth, axis. These three restrictions were necessary to limit the : ::;
scope of the nitial study to a size that would allow for a complete verification of the o

e
. L]

localization technique proposed, in the time allotted for the study.

10
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Chapter II describes the theory used to develop the localization algorith:1. An
overview of the problem and its geometry is presented, and then the computations
leading to the algorithm are discussed. Finally, the limitations of the algorithm are
presented.

Chapter II1 consists of the computer simulation results and an explanation of the
implementation of the theory in a computer algorithm. The output from the

- localization algorithm is compared to the known geometry, and a comparison of
double precision versus single precision results is included. Additionally, the program
Is investigated to determine if errors develop as a function of the transmission angle
and, or depth separation. As will be shown in Chapter II, the roots of a fourth-order
polynomial must be determined to find the angle of transmission at the source. The
roots for the fourth-order polynomial are found through use of an International
Mathematical Subroutine Library (IMSL) subroutine and are verified by comparison
with graphs of the function. These graphs also assist in determining the correct root to
use during problem solution.

In Chapter IV, conclusions and recommendations are presented.
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II. THEORY '
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' h
. [}
A. PROBLEM OVERVIEW AND GEOMETRY o
Traditionally, the localization of acoustic transmitters by ships has been carried ":
out by obtaining many lines of bearing to the transmitter, and comparing these with '

) own ship’s motion to develop a geographic picture of the transmitter’s motion. This ]
method is time consuming and usually very lacking in terms of accuracy. Due to the ‘
nature of the deterministic effects of the ocean medium, a great deal of information is :

. contained in the angles at which acoustic energy arrives at the receiver. Extraction of ) '
. . . . . . . o8
this information from the local angles of arrival, while not a simple task in of itself, ‘
t
’ would greatly simplify the problem of target localization. '::
As a first step in exploiting the information contained within the local angles of ::',
- . . 4
arrival, a geometry must be assumed for the problem. Figure 2.1 illustrates the general L
three-dimensional geometry used in the development of the method of target :’
1
localization presented here. by
. . .. )
From Figure 2.1 the following definitions are apparent: M
® Xy Yoo 2y rectangular coordinates of the transmitter in meters. *
* XRs YR» ZR rectangular coordinates of the center of the receive planar ‘:
array in meters. R,
. . . o
¢ AX, AY, AZ cross range, depth, and Z coordinate separations, respectively, o)
in meters between the transmitter and the receive array, ;’C
where: .
AX = Xp - X, t::
AY = yp- % o
AZ = ZR - ZO .:
¢ AR polar radial distance in meters from the transmitter to the RS
receive array. %.
. by !
Note: AR? = AX? + AZ? e
* HDLTR polar radial distance in meters that a ray would travel in a Ryt
homogeneous medium (constant sound-speed profile) between >
depths v, and yp based on an angle of transmission of B(yo). ;
¢ HDLTX, HDLTZ distances in the X and Z directions, respectively, that a rav >
would travel in a homogeneous medium between depths v, 3
and yp based on an angle of transmission ofB(yO). :;
¢ HRLOS line-of-sight range that a ray would travel in a homogeneous gy
medium between depths vy and yp based on an angle of :'
transmission of B(}'O). '
[V
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Note: HRLOS? = HDLTX? + AY? + HDLTZ2

line-of-sight range between the transmitter and the center of
the receive array.
Note: RLOS? = AX? + AY? + AZ?

* B(y,) initial angle of propagation (angle of transmission), measured
with respect to the positive Y axis, of the acoustic signal at
source depth ¥, meters.

g

T

-
8

e

* B(yp) angle of arrival of incident plane wave field at depth vp
meters.

¢ BLOS the line-of-sight angle, as measured from the positive Y axis,
between the transmitter and the receive array.

Note that.in Figure 2.1 the positive Y axis is defined.in the direction of increasing
depth, or in the downward direction. The coordinate system shown in Figure 2.1 is
applicable for any relative positioning of the transmitter and receive array, even if AX,
AY, and’'or AZ are negative. Thus, the algorithm will work for any direction of arrival
of the incident acoustic plane-wave field.

-
PR TR ™ T BRI A

The receive array is assumed to possess knowledge of its own depth. In addition,
the receive array will have available estimates of arrival direction cosines associated

<M

with the local angles of arrival. These estimates are computed by the frequency

T 1.‘

domain adaptive beamforming algorithm. From these known quantities and
information about the local sound-speed profile, the transmitter’s location with respect
to the receiver shall be determined.

B. TRANSMITTER LOCALIZATION THEORY

Energy, whether it is acoustic or electromagnetic, will refract as it passes from a
medium with index of refraction n into a medium with index of refraction n,, provided
that n; # n,. In this study, the ocean volume is characterized by a one-dimensional

index of refraction (sound-speed profile) that is a function of depth. Snell’s law is
given by [Ref. 1: p. 218],

sin B(y) _ sin B(y,)
«(y) «(¥g)

where ¢(v) is the speed of sound in meters per second at a depth y. From Snell’s law a
ray parameter may be defined as

0, R 0 \ (LAY
.'/‘|.D‘la....!‘l‘v “-‘\"ﬁl" . I“-‘I'.‘l‘."‘.‘\".d\ LA Wy " 1., AR N
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y = SnBGy) _ sinBlyg) _ sin Bypp) !

(2.2)
(¥g) «(yR) «ytp)  <yTp)
where:

*b is the ray parameter.

*YTP is the depth of a turning point. A turning point is defined as the point
along a ray path at which the angle of propagation, B(yp), is equal to
90 degrees.

At this point B(}'R) 1s known, since the direction cosine
v(yRp) = cos B(yp) .. .. - ee- (23

is calculated by the {requency domain adaptive beamforming algorithm. The speed of
sound at depth yp, denoted c(yp), is normally known aboard ship as a result of
measurements made by onboard sonar systems.

It is assumed that the sound-speed profile is a linear function of depth with
constant gradient. In most areas of the ocean this is a good approximation if both the
transmitter and the receive array are in the same portion of the sound-speed profile. A
typical sound-speed profile is shown in Figure 2.2. The parameter g is the constant
gradient of the sound-speed profile in seconds™. From the surface to about 100 meters
a positive gradient is typically observed with a gradient g ® +0.016 sec’!
[Ref. 4: p. 30], [Ref. 5: p. 401]. Below 100 meters a negative gradient is present, and in
this example g = -0.02956 sec’!. Finally, at depths between 700 to 1500 meters
(Ref. 4: p. 32] the gradient reverts to a positive value of g = +0.017 sec’!
[Ref. 5: p. 401]. The value of g in the negative portion of the gradient was computed
by assuming the speed of sound to be 1500 meters per second at the ocean surface and
1475 meters per second at a depth of 1000 meters [Ref. 6: p. 3]. A depth of 1000
meters was chosen as the starting point of the second positive gradient. The negative
gradient was then calculated to fit between the positive gradients. Based on the
assumption that both the transmitter and the receive array are in the same gradient of
the sound-speed profile, the spued of sound at depth v can be found from

o(v) = clyg) + gy -y (2.4)
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g = 0.016/sec Sound-Speed Profile
100 m

g = -0.0296/sec

g = 0.017/sec

Figure 2.2 Typical Sound-Speed Profile.
The radius of curvature that describes the arc of the circle followed by an

acoustic field propagating through this medium is then [Ref. 1: p. 237]

R oo 5 cvp)
g sin P()l g sin P(yR)l

(2.5)

All the terms on the far righthand side of Equation 2.5 arc known. Lquation 2.4 may
be rewritten as expressed by Ziomcek [Ref. 1: p. 238]

c(v) - c(¥y)
8

Therclore,
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1 1
AY = yp-¥y = ry c(yR) - ry (¥g) (2.7)

and, from equations 2.1 and 2.2, ,

sin B(vR) "

oyp) = . (2.8) o

&
and

’
]

sin B(v,) . . C ee .
=

- - L4

c(yg) = (2.9) T .

Combining equations 2.8 and 2.9 with equation 2.7 it is readily observed that, iy

AY —l in B(yp) L B(y,) (2.10) .
=YV - Vs = sin Vv - = SN YV, .
R be I RYR bg %0

Y
AY = yp - vy = asin f(yg) - a sin P(yy) (2.11) 3

where

L2 7

]

a= —, 2.12
be (2.12)

-

The only unknowns now in equation 2.11 are ﬂ(yo) and AY. Also note that

RC = |a] = radius of curvature. (2.13)

.'-.;."-' S L -‘l l.‘

The radial distance AR shown in Figure 2.1 can be found by utilizing the
3 following equation [Ref. 1: p. 238

A e T

;; -
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(¥)

+ —_—
g sinf (y,)

N
l

[cos B(yp) - cos B(y)] (2.14)

which is the Z coordinate of a ray propagating in the YZ plane. In this thesis a more
general class of problem is assumed so that the coordinate axes can remain fixed
relative to the platform on which the planar array is mounted. Therefore, in a three-
dimensional system, z and z; are replaced by the polar coordinates r and Iy to give

<(¥p)

r=r, + —=0
g sinp (v)

0 [COS B(}'g) - €05 B())] ’ (2-15)

e . - * . . - o o - . - - - s .

and, as a result,

1
AR =rp -1y = E [cos B(yg) - cos B(yRp)] (2.16)
or
AR = rp -1y = acos B(yg) - a cos B(yR) . (2.17)

The only unknowns in equation 2.17 are B(yo) and AR. Also, note in Figure 2.1 that if

AX = 0, (2.18)
then
AR = AZ. (2.19)

At this point ray acoustics cannot provide any further information to develop a
solution to the problem. However, a model-based phase weight for a planar sonar
array, similar to that shown in Figure 2.3 , can be used to localize the transmitter. As
derived by Ziomek and Blount [Ref. 3]

@ (D = -2nfyndy + Oyp(fn) 0= -(N-1)2,..0..(N-1) 2 (2.20)
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Figure 2.3 Receive Planar Array Geometry,
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"
where 2.:

8l (2.21) »

fy = :
Y «(yR) "

vg = cos B(yy) (2.22) o

and: "

*® () is the phase weight in the Y direction associated with element (m,n) v
in the receive array. v

of is the frequency of the transmitted electrical signal. 4

L) (DM‘D(f,n) is the model-based phase weight which is related to the deterministic - X
angle modulation performed by the ocean medium on the transmitted t
electrical signal as a function of depth [Ref. 3]. '

4 *vr is the depth of the transmit array.
*dy is the interelement spacing in the Y direction associated with the
receive array.
Equation 2.20 describes the phase weights in the Y direction that a planar sonar |::
array using the three-dimensional FFT beamformer presented by Ziomek and Blount

[Ref. 3] would use to receive an acoustic signal transmitted from a depth yp and i
received at a depth yp. This equation can be seen to consist of two parts. The first
portion is the term -2rfyndy which is the phase weight used in traditional beam
steering. The second part, (DMD(f,n). is further described by Ziomek and Blount
[Ref. 3] as

®y\pifn) = - (k(yp) 2vglile(y7) glinp(yg + ndy) - 1] + AY,) (2:23)

D )

v

where the wave number in radians per meter as a function of depth YT IS

'.( .'(.-. ..( ',. ..- _.f

LA AT

e s

f=f+Kkf,  k=-K..0..K. (2.25)

s

w v
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2 o

(yT)

n'p(yp + ndy) = —————-, (2.26)
DR Y o(yp) + gAY,

and,

AY, = yp -y + ndy, (2.27)
where:

e f_ is the carrier frequency in hertz,

e f, is the fundamental frequency in hertz of the finite Fourier series representation

of the complex envelope of the transmitted electrical signal, and

" e K is the highest harmonic used in the finite Fourier series.

The term n'[y defines an index of refraction which is corrected for the distance
that the (m,n) element in the receive array is offset in the Y direction from the center
of the array. This compensation is provided by AY_, which computes the depth
separation between the center of the transmit array and the element {m,n).

When using these model-based phase weights it should be noted that yy is

VB =
Dividing

k(vp)

equivalent to v, of Figure 2.1. Additionally,

cos B(y) = cos B(y,) - (2.28)
equation 2.24 by 2vpg vields

2nf 1 nf

2\'B

The term

nD(yR + ndy) -1 =

and, as a

2".‘!‘:‘l'~l':‘l iy :‘i"l."i. A

= . (2.29)
o«yt) 2vg  oyT)vp

n'p(yr + ndy) - 1 may also be rewritten as

cl }'T)

— . (2.30)
c(vy) + gAY,

result,
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c(yp) - c(yp) - 8AY 4
n’ + ndy)-1= o 2.31 ,
DYR Y) oyp) + BAY. (2.31) b
n'py(Yr + ndy) - 1 “eAY, (2.32) "
y n - = N . vd
DYR Y ) + Ay, ]
4
Therefore, substituting equations 2.32 and 2.29 into equation 2.23 yields -
-l [-e(yp)AY + o(yp)AY, + gAY 2
®\(p(hn) = [-c(ypAY (yp)AY, + gAY ] (2.33) 6;
: «yT)VB [e(y1) + gAY ] &
&
. . -nf . gAY ? . e
Q)\AD(f'n) = _ a4 (2.349) ‘:
~ c(ypivp levp) + gAY, N
i
(]
Expanding the denominator of the second term on the right side of equation 2.34
results in b
s
o(yp) + gAY, = c(y1) + 8(yR - ¥yT + ndy). (2.35) 3
2
From equation 2.4 it can be seen that K
¢
o,
o(y1) + 8(yR - ¥ + ndy) = c(ygp + ndy). (2.36)
X
Therefore, N
o
~
co(yp) + gAY, = c(yg + ndy). (2.37) y
39
Substituting equation 2.37 and equation 2.22 into equation 2.34 gives ;~ -
-migAY 2
(D\/(D(f,n) = g a . (238) "
’ c(yr)e(yR + ndy) cos B(yT) 3
NS
From equation 2.2, with y1 = v, i

rJ
ro
g

=5

b
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2.39 Y
b (2.39)

val
and, as a result,

-nfbgAYnZ \

]
(2.40) X

®\plfn) = '
mpthn) o(yg +ndy) sin B(yp) cos B(y) 3

{1
From equation 2.12, )

o . 2.12
- y (2.12)

or

1
— =bg. (2.41) po!
a

Using equation 2.41 in equation 2.40 yields

8
‘\,
® () -7thYn2 (2.42) Y

q) = . 4
MD ac(yg + ndy) sin B(y) cos P(y) 0
where ]
La%

) h
o

AYn =VROYT + ndY = AY + ndY . (2.43)

\

-

If the center element of the receive array is chosen as the element at which the "
phase weight @y y(fin) is calculated. then n = 0, and B

AY, = AY = yp - v (2.4

Therefore. atn = 0
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®\(p(£0) = A . (2.45)
~ ac(yg) sin P(y) cos P(yr)
Now squaring both sides of equation 2.10 will result in
AY? = aZsin?B(y,) - 2a%sin B(yg) sin P(¥,) + a%sin®B(yR) (2.46)
which can be used in equation 2.45 to replace AY2. Now let
x = sin B(y,) (2.47)
and
y = cos B(y,) - (2.48)

The x and y defined in equations 2.47 and 2.48 are not the x and v coordinates
related to Figure 2.1. Rather, this x and v are merely dummy variables to be used in
the solution of equation 2.45. Due to the definitions of equations 2.47 and 2.48 a
relationship between the variables x and v is apparent, that is,

and, therefore,

v==(l1-x)l'2, (2.50)

Next, replace y1 with y, in equation 2.45, substitute equation 2.46 into equation
2.45, and multiply equation 2.45 by ac(ygp)xy. This resuits in

ac(yR)QMD(f,O)xy = -nf[azxz . 2a%sin B(}'R)x + azsinzﬂ(yR)] . (2.31)

Divide both sides of equation 2.51 by mfa® to get
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(YR)
nfa

®y(p(fOxy = -x* + 2 sin B(yg)x - sin?B(yg) -

Rewriting equation 2.52 yields

( v R\
nfa

X%+

D\ p(F0xy - 2 sin B(yR)x + sinzp(yR) =90

or
AX? + Bxy + Cx + D = 0

where

A =10,
¢(VR)

B= —X@ £0),
nfa MptO

and

D

[

sin? B(vR) -

Substituting equation 2.50 into equation 2.54 yields
Ax? £ Bx(1 - )2+ Cx+ D=0

or,

5

AP+ Cx + D = £ Bx(l-x)l'2.

T L N I A S A

laate® fah 008 2,0 F X 6.0 VAT BT Bl R T R e -

(2.52)

(2.53)

(2.54)

(2.55)

(2.56)

(2.57)

(2.60)
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Squaring both sides of equation 2.60 gives

o

.l

(Ax? + Cx +D)? = BZx(1 - x?) = B2 - B%¢ . (2.61) )

¢

Expanding equation 2.61 yields ‘E
y

At + 2ACK3 + (2AD + CH)x? + 2CDx + D? = B%?.p2x (2.62) )
ot by
¢

(A% + Bx* + 2ACx3 + (2AD - B2 +CHx® + 2CDx + D? = 0. (2.63) '
To find the unknown, x, the roots of equation 2.63 must be computed. These ',:
roots will also be the roots of equation 2.59. In the computer algorithm written to N
implement this theory, the value &
h

F(xy) = Ax® £ Bx(1 - x)L'2 + Cx + D (2.64) !

was also calculated to verify the validity of the roots found for equation 2.63.
Recalling that equation 2.47 defined

25 o Sav S

x = sin P(yy) (2.47)

o

and equation 2.48 defined n
v = cos B(y,), (2.48) :
we see that once x and y are known they may be substituted into equations 2.11 and o
2.17 to solve for AY and AR (since B(}'R). the radius of curvature (a), the receive array .
depth, and the local sound-speed profile are all known). :

At this point AY, AR and P(y,) are known. The next values to be found are AX,

. . v « . . l‘

AZ, RLOS. and BLOS. Using the definitions of the direction cosines as presented by e
Ziomek [Ref. 1: p.226] -

v = cos B(v), (2.65)

<
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u = cos a(v), (2.66)
and

w = cos ¥(y) (2.67)
where:

® afy) is the angle at a depth v measured from the positive X axis to the

vector of interest.

® y(v) is the angle at a depth y measured from the positive Z axis to the
vector of interest.

Referring to Figure 2.1, the direction cosine v(y) at the transmitter depth can be
written as

AY

V(}‘O) = ¢O0S B(}'O) = m (2.68)

and, as a result,

AY
HRLOS = ‘ (2.69)
v(¥y)
Also from Figure 2.1 it can be observed that
HRLOS? = HDLTR? + AYZ. (2.70)

In ray acoustics, as presented by Ziomek [Ref. 1: p.223], the propagation vector
is defined as

k = kx‘( + kY} +kzZ (2.71)
where
kx = kou, (2.7
27
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Therefore, at the transmitter,

2nf

Ky = —— u(yp).,
XT = o WO

and, at the receive array,

k i) .77)
= u(vp). .
XR = i YOR

Additionally, for an inhomogeneous medium which has a sound-speed profile that is a
function of depth only, 1t is known that [Ref. 1: p.223]

kXR = kXT = constant .

Therefore, from equations 2.76 and 2.77,
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P'(' or,

R ' B c(y—r)
o oD c(yR)

u(yR) . (2.81)

In equation 2.81 u(yp) is supplied by the beamformer, ¢(yRr) is known by own
ship, and since equation 2.11 has been solved for AY, it is possible to use equation 2.4
:::: to calculate ¢(y). Therefore, u(y) becomes a known quantity. An alternate method
:‘:l of determining ¢(yT) would be by the use of Snell’s law, or equation 2.1, since ﬂ()‘R),
B(y1) and c(yR) are ali known.

Similarly [Ref. 1: p. 233],

“., kZR = kZT (282)

and, as a result,

o (v = O o
: VO = oy SR (283)

Lo Referring to Figure 2.1 and utilizing equation 2.81 it can be seen that

c(vy) HDLTX

) Wy, = cos v, = wy = ———
‘!. (_0) (.0) C(}R) (, R) HRLOS

(2.84)

::\’ Therefore, since u(y,) is known from substituting y, for y1 in equation 2.81, the value
XA of HDLTX is given by

HDLTX = u(y;,)HRLOS . (2.85)

"';f Now that u(y,) and v(y,) are known from equation 2.84 and equation 2.68, it is
N possible to find w(y,) by use of the fact that (Ref. I: p. 224

?;; “.:(}.U) = l . UZ(}U) . VZ(},O) . (ﬂ 86)
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Again utilizing Figure 2.1 and the fact that

W(¥g) = cos ¥(¥y) , (2.87)

we see that

) HDLTZ (2.88)
w(v,) = —— . .
o) = iRLos
Therefore,

HDLTZ = w(yp) HRLOS . (2.89)

Figure 2.4 shows the geometry of Figure 2.1 as seen by looking down into the
XZ plane from above the transmitter's depth. From Figure 2.4 the relationships
between AZ, AX, and AR may be derived.

The angle 6 in Figure 2.4 can be found from

HDLTX
tan § = —m—. (2.90)
HDLTZ
Therefore,
6 = tan'(HDLTX HDLTZ). (2.91)

Substituting equations 2.85 and 2.89 into equation 2.91 results in

8 = tan"!{[u(y)HRLOS] [w(v,)HRLOS}} (2.92)
so that
8 = tan"'u(y) w(y,)l - (2.93)
30
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< Az >

<4———HDLTZ ———————

4
)
HDLTX
AX
4
AR
4

Figure 2.4 Topview of Geometry.

For an inhomogencous medium with a sound-speed profile that is a function of
depth only, it can be shown that {Ref. 1: p. 232]

—_—) = constant . (2.94)

Thercfore,
0= tan"[u(yR),'w(yR)] (2.9%5)

where u(yp) and w(yp) are available from the frequency domain adaptive beamformer.
From Figure 2.4, AZ and AX arc given by

AZ = AR cos d (2.90)

and
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AX = AR cos d. (2.97)

Referring once again to Figure 2.1, RLOS is given by

RLOS = (AX2? + AY?2 + AZ3)!2 (2.98)
or, since

AR? = AX? + AZZ, (2.99)

RLOS = (AR? + AYHl'2 (2.100)

Finally, PLOS can be determined by using

BLOS = cos’/(AY/RLOS). (2.101)

The equations presented in this section comprise the theory used to develop the
model-based localization algorithm. By the use of ray acoustics and the assumption
that the model-based phase weight is known, a closed form solution is possible for the
localization problem. Obviously, the solution’s accuracy depends on a ship’s ability to
correctly measure the sound-speed profile and the effects of any other local sonar
conditions, such as shallow depths and the presence of biologics. However, in the open
ocean, when the transmitter and receiver are located in the same gradient of the sound-
speed profile, a reasonably accurate solution is possible. There are some limitations
involved with the use of ray acoustics and the modecl-based phase weights. These
limitations will be discussed in the next section.

C. LIMITATIONS OF RAY ACOUSTICS SOLUTION
1. Turning Points
A turning point is that position along a ray path propagating through an
inhomogeneous medium at which the angle of propagation measured with respect to
the positive Y axis, B(v). is equal to 90 degreces. At this point the origination of the rayv

path becomes ambiguous to a receiver using the localization technique described in this
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thesis, because there is no way of knowing how many turning points the acoustic

signal has passed through. The turning point will cause a transmitter that is below
(above) the receiver to appear to be above (below) the recciver. Figure 2.5 illustrates
these two possibilities. In the case of receiver one in Figure 2.5, a turning point has
occurrcd betwecn the transmutter’s location and the receiver’'s location. The theory
presented in this section would result in a calculated line-of-sight similar to that shown
in Iigure 2.5. The acoustic signal passes through two turning points prior to rcaching

recciver two, and the rcsulting line-of-sight calculation would indicate that the
transnutter is at a Jdepth below receiver two.

Speed of Sound
0 >
R
ange >
g = 0.016/sec Sound-Speed Profile
100 m
g = -0.0296/sec
1000 m Transmitte\ Calculated LOS
L
g
o Receiver One Receiver
v

Figure 2.5 Turning Point Ambiguity.

The turning point ambiguity problem i1s not necessarily very restrictive,
depending on local sonar conditions. Table 1 lists the location of turning points in
terms of AY and AR between the transmitter and recetve array. The values in Table |

were calculated by assuming the values for B(}'U). ¢(vy), and g shown in Table 1. and
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I
then using equations 2.11 and 2.17 with B(yR) = 90°. These results show that for .
most angles of transmission the floor of the ocean would be reached prior to the signal :
reaching a turning point. Even at angles of transmission greater than 60 degrees the B
ranges to a turning point are quite large. N
TABLE | ‘
DEPTH AND RANGE TO TURNING POINTS FOR A POSITIVE e
GRADIENT ;
4’1‘
Bixg) AY (km) AR (km) _g
10° 412913 492.043 )
20° 166.935 238.343
30° 86.765 150.276 1
40° 48.241 103.424 ,
50° 35.921 86.765 )
60° 13.449 50.063 s
70° 5.570 31.582 o
80° 1.336 15.271 2
85° 0.331 7.592 Al
o(¥g) = 1475 m'sec g = 0.017 sec’! a-
v
-
If the transmutter and receive array are located in the negative gradient -
portion of the sound-speed profile as shown in Figure 2.5, the situation becomes much E‘$
more restrictive. Here the transmitter must transmit in the upward direction to reach a ‘,:::
o
turning point, as opposed to the downward transmission assumed in Table 1. Table 2 :
contains the results of calculations for the turning points in this region. In this case, 3
the angles were only varied from 91 degrees to 100.8 degrees in order to place the :-‘;‘
”
turning point within the negative portion of the sound-speed profile of Figure 2.5. :"
Even with the higher magnitude gradient used in Table 2, ranges of several thousand -:\
meters are achievable prior to the turning point. Note that all distances in Table 2 are ,
&
in meters, whereas those listed in Table 1 are in kilometers. ,f:
o
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B(vy)
91.0°
93.0°
95.0°
97.0°
99.0°
100.0°
100.2°
100.4°
100.6°
100.8°

oyy) =

TABLE 2

GRADIENT

AY (m)
-7.601
-68.478
-190.604
-374.729
-621.991
-769.765
-801.279
-833.451
-866.283
-899.777

1475 m, sec g = -0.02956 sec™!

DEPTH AND RANGE TO TURNING POINTS FOR A NEGATIVE

AR (m)

870.982
2615.070
4365.554
6126.767
7903.148
8798.434
8978.159
9158.091
9338.253
9518.650

2. Changes in Sound-Speed Profile

The transmitter and receiver must be in the same gradient of the sound-speed

profile for the theory presented in this thesis to work. If the transmitter and recciver

were located in different gradients of the sound-speed profile, a false location would be

indicated due to the change in local angle of arrival. This situation is illustrated in

Figure 2.6.

3. Validity of Model-Based Phase Weights
The development of the modcl-based phase weights is based in part on the

assumption presented by Ziomek [Ref. I: p.253] that if

[n?(y) - 1] V3l < < 1,

then

Ky(v) = ky + Ky2n®(3) - 1] (2ky)

~
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A}
where
]
c(vy)
) n(y) = —2 (2.104)
c(yp)
&
! and
¥
Ky = k(ypv(y,) = V(¥y) - (2.103)

o(¥,)

For some cascs, such as [3(}'0) approaching 90 degrees, v(yv,) becomes very
small, resulting in the criteria of equation 2.102 being violated. In these instances the
modcl-based phase weights can no longer be considered valid. Computations were

performed prior to running the test cases presented m this thesis to ensure that test
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cases which violate equation 2.102 were identified and not misrepresented as valid test
cases.

In addition, the WKB approximation, which is the basis for the development
of the model-based phase weights, becomes invalid as ky(v) approaches zero
[Ref. 1: p. 213]. This is the case at a turning point.

4. Depth Separation of Zero Meters

[f AY = 0.0, meters the angle of transmission, B(yo), and the local angle of
arrival, B(yR), must both be equal to 90 degrees to permit the receive array to receive
any signal without that signal having to pass through a turning point. The algorithm
fails here due to its invalidity at turning points and, as can be observed in equation
2.17, because AR would always be computed as zero. Obviously, a AY = 0.0 meters
does not necessarily imply that AR = 0.0 meters, since this condition is normally

known as a collision.
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III. COMPUTER IMPLEMENTATION OF LOCALIZATION THEORY

A.  PROGRAM DESCRIPTION

The implementation of the theory described in Chapter Il was performed by
writing the FORTRAN computer program LOCATE. LOCATE is designed to operate
as a subroutine in the frequency domain adaptive beamforming algorithm developed by
Ziomek and Chan [Ref. 2]. LOCATE contains one subroutine, PLOTER, which
creates plots of the function described by equation 2.64. The description of LOCATE
that follows demonstrates the relationship between the equations of Chapter Il and the
flow diagrams, however, the actual FORTRAN statements are not presented. After
LOCATE is explained, there is a short discussion of PLOTER. Section B discusses the
method by which the algorithm was validated. Section C provides the actual results as
compared to known geometries, and gives a comparison of double precision versus
single precision results.

1. Program LOCATE

The program LOCATE uses as inputs the estimated direction cosines for local
angles of arrival, model-based phase weights, and knowledge of the local sound-speed
profile to determine AZ, cross-range (AX), depth separation (AY), and the line-of-sight
range (RLOS) to the transmitter. Also, elevation depression angle and azimuthal angle
to the transmitter are provided by LOCATE.

The elevation depression angle, as shown in Figure 3.1, is defined as the
minimum angle between the receive planar sonar array’s XZ plane and the line-of-sight
between the transmitter and the receive array. The elevation depression angle is
defined to be positive (elevation) if the transmitter’s depth is less than the receiver’s
depth. If the transmitter i1s at a greater depth than the receive array the
elevation, depression angle is negative (depression). Therefore the elevation depression
angle ranges in value from -90 degrecs to + 90 degrees.

The azimuthal angle, a: shown in Figure 3.2, is defined as the minimum angle
between the receive planar sonar arrav's Z axis and the linc-of-sight between the
transmitter and receive array, in the reccive array’'s XZ plane. The azimuthal angle
then ranges from + 180 degrees to 0 degrees for positive AX and from 0 degrees to
-180 degrees for negative AX.

The inputs to the program LOCATE are defined as follows:
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Figure 3.1 LElevation, Depression Angle. o
-
o
) * UYR, VYR, WYR  estimates of direction cosines u(yp), v(vp), and wiyp), -
respectively, as calculated by the frequency domuin N
adaptive beamformer. >
o PII model-based phase weights. S"
+
* F'REQC carrier frequency of the received electrical signal. 1
* [0 fundamental frequency of the finite lourier scries ~
representation of the complex cnvelope of the reccived a0
clectrical signal. Y
RS
G gradient of local sound-speed profile. A
e CYR speed of sound at receive array depth yp. »
s NTOTAL total number of receive elements along the receive array’s Y :::
. _.
o axis. | . t::
* QPRIME, QTOTAL parameters used to deternune which harmonic is to be used D
in current calculations. n
. . . . . ®
e NPRIME parameter used to determine which element’s phasc weight GX
to use. e
AN
All the inputs are currently available from the frequency domain aduptive N
beamforming algorithm described by Ziomek and Chan [Ref. 2], with the exception of '_-;\
PHI. Tigures 3.3 and 3.4 illustrates the flow of the program LOCATE. ’..
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3
A
The beamformung algorithm is written in single precision FORTRAN. )
However, the program LOCATE must operate in double precision to cnable it to ._
develop accurate roots for equation 2.63. Thercfore, the values passed to LOCATE bes
5.
from the adaptive becamforming algorithm must be converted to double precision, S,
cither in LOCATE, or before they are sent to LOCATE. In this thesis, all values L.
passcd to LOCATE were double precision values. For testing purposcs, only the A
o
portions of the adaptive beamforming program which develop values required by o
LOCATE werc used, along with a program entitled SOUNDRAY, which generates the ;'.;
truc problem gecometry. The recasons for the use of double precision and the support ]
programs used in testing LOCATE are further described in Section 111.B.1. *
Once the program LOCATE is entered, a loop paramcter oy
K4
QITEMP = 1, QTOTAL is established. I'rom QTEMP, an index Q for the harmonic -
of interest is chosen. This value Q is then used to determine the frequency IF that will
K
be used for further computations. N
To calculate the ray parameter SMB the local angle of arrival, By ). 1s first :;
found by the arc cosine of VYR, Then SMDB is calculated by equation 2.2, using CYR ,'$
)
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Figure 3.4 Program LOCATE FFlowchart.
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and B(yp). The value of G is passed to LOCATE by the adaptive beamformer, so
SMA, the radius of curvature, is now found by using equation 2.12. At this point,
equations 2.55 through 2.58 are utilized to determine the coeflicients A, B, C, and D.
These coefTicients are in turn used to find the coeflicients of equation 2.63, which are
stored in an array called COEFF.

To determine the roots of equation 2.63, the double precision [MSL
subroutine ZRPOLY is called, using the arrav COEFF as the input. ZRPOLY returns
complex roots for equation 2.63 in an array called LAMBDA. [n all the test cases that
were run, the four roots in LAMBDA always consisted of two real roots and two
complex roots. As a check of the validity of the roots, the value of F(x,v) from
equation 2.64 was calculated. A graph of the function F(x,y), such as that shown in
Figure 3.5, was used to determine whether to use +(1 - xH2 or (1 - ) 2 in this
computation of F(x,y).

The graphs indicated that for positive values of VYR the real roots are
associated with the +(1 - x:)l"2 term, while the complex roots are associated with the
{1 - xz)l"z term. This can be seen in Figure 3.5 where the curve associated with
-1 - xz)l 2 does not cross the F(x,y) = 0 line. The graph in Figure 3.5 only shows a
small portion of the X axis. Test runs demonstrated that F(x,y) increases as x varies
from the x value corresponding to the minimum value of F(x,v), in both the positive
and negative X directions over the range 0 < x < 1. Therefore, the graphs were
expanded in the region close to the minimum of F(x,y) to provide better resolution.

To continue with the calculations, one of the four roots must be selected as
the value x of equation 2.47. No logic in the theory section, however, provides any
basis for a decision as to which root is correct. The complex roots were disregarded
because thev cannot equate to X in equation 2.47. In order to determine a relationship
which would allow programming logic to select the correct root from the two real roots
found by ZRPOLY, numerous test cases with known transmitter and receive array
locations were run using the four possible geometries allowed by the constraints listed
on page six of this thesis. These geometries are:

l. transmitter above receive arrav, 0° < B(yo) < 90°, G > 0.
2. transmitter below receive arrav, 90° < B(_\'O) < 180°, G = 0.
3. transnitter above receive array, 0° < B(yo) < 90°, G < 0.
4. transmitter below receive array, 90° < f(v,) < 180°, G < 0
43
O N ~v B R N TSN R T POt Wi }}' :_--;,‘“)."h_)‘\'

1)

ARSI,
X

N WL T 4

g
iy

LA A S X

P

r L EES

>

v
o



-
ol -

=

. -

A

:,c“ A A A N A T AT A T N LS WA A AT AL WIS
e . . "V, . Has M aNnXaNaX)

Figures 3.5 through 3.8 correspond to each of the four types of geometries
listed above. Analysis of these graphs, along with knowledge of the true geometry for
each case, determined that if the product G * VYR, designated RTSLCT (root
selection) in Figure 3.4, is negative, the largest real root is the correct value of x. If
RTSLCT is positive, then the smallest root is the correct root. All test cases which
were subsequently run using this root selection logic resulted in the correct localization
of the target.

The root selected corresponds to X in equation 2.47 and is next used to
calculate DELTAY (AY) and DELTAR (AR), using equations 2.11 and 2.17,
respectively. From DELTAY and DELTAR , RLOS is computed from equation 2.100.
The azimuthal angle is calculated next by equation 2.95, since UYR and WYR are
known from the adaptive beamforming algorithm. Now DELTAZ (AZ) and DELTAX
(AX) may be computed from equations 2.96 and 2.97, respectively.

The elevation,/depression angle is the last value to be computed. This is done
by using equation 2.101, which provides BLOS. The angle BLOS is then converted to

the elevation’depression angle by equation 3.1.

ELEVDEP = 90° - BLOS 3.1

This elevation’depression angle is more useful than BLOS to personnel
onboard ship because it provides a target location that is referenced to own ship’s
horizontal plane. Note that computing ELEVDEP in this manner results in a negative
value if BLOS >90°, which indicates that the transmitter is below the receive array,
and a positive value when PLOS <90°, which implies that the transmitter is above the
receive array.

Program LOCATE next calls the subroutine PLOTER, if desired, to generate
a plot of F(x,y) such as that shown in Figure 3.5. Once the graphing subroutine is
completed, LOCATE checks the index Q to determine if the required number of
harmonics have been evaluated, and proceeds to process another harmonic if this has
not been done. Otherwise, the program returns to the adaptive beamforming program.

2. Subprogram PLOTER

The purpose of subprogram PLOTER is to provide a graphic representation
of the roots which the IMSL subroutine ZRPOLY calculates. The inputs to this
subprogram are:

*ABCD coefficients for equation 2.64.
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° G gradient of the local sound-speed prolfile.
e DELTAX, DELTAY, DELTAZ cross-range, depth, and Z coordinate ¥
separations  calculated by the program o)
LOCATE. ot
e JLOS the linc-of-sight angle as calculated by '?‘_
S LOCATE. ' "_
The values of G, DELTAX, DELTAY, and DELTAZ are printed out on the graph as .::
i G, AX, AY, and AZ, respectively, to provide a means of identifying the geometry of :
the case corresponding to each graph. : )
The values A, B, C, D, and G are converted to single precision values prior to :
being passed from LOCATE to PLOTER, because PLOTER was written using ]
DISSPLA which operates only in single precision. Due to the single precision accuracy »
",
of DISSPLA, plots made by PLOTER are not accurate enough to determince the roots ,
t
of equation 2.04. However the plots do show approximately where the roots occur. ::*
Figure 3.9 illustrates the flow of the subroutine PLOTER. O
| :
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Figure 3.9 Subprogram PLOTER Flowchart.
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The subroutine PLOTER first computes the minimum value of F(X,v) in the
interval 0 < x < 1 by incrementing X by 0.1 units. This minimum, XMIY, is then
used as the center of the plot, with XMIN - 0.025 and XMIN + 0.025 as the lower
and upper bounds of the graph. If XMIN + 0.025 2 1.0 the plot is centered at 0.975
to avoid having the computer attempt to calculate the square root of a negative value
of 1-x% in equation 2.64. After the plot is completed, PLOTER returns to the
program LOCATE.

B. ALGORITHM VALIDATION
. Generation of Received Signals

The inputs listed in Section A of this chapter for the program LOCATE were
generated through the use of two programs. The first program is titled SOUNDRAY
and was written by Professor L. J. Ziomek at the U. S. Naval Postgraduate School,
Monterey, California, in 1987. The second program is the subroutine PHSWGT
developed by Ziomek and Blount [Ref. 7. SOUNDRAY utilizes ray acoustics and
geometry to develop feasible geometries for calculations of local angles of arrival of
acoustic signals. The inputs to SOUNDRAY are the X, Y, and Z coordinates of the
transmitter, the X and Y coordinates of the receive arrav, the initial angle of
propagation, B(y-r), and information describing the local sound-speed profile.
SOUNDRAY then uses equation 2.1 to determine D(yR) and equation 2.15 to calculate
AR. From this point, geometry alone allows calculation of the RLOS and BLOS, from
equations 2.98 and 2.101, respectively, and

AZ = (RLOS? - AX?- AYH1Z, (3.2)

In addition, SOUNDRAY calculates the inputs for the subroutine PHSWGT
and the estimates (in this case exact values) of direction cosines for the acoustic signal
arriving at the receive array. SOUNDRAY determines the exact problem geometry,
independent of the model-based phase weights, thereby providing the standard by
which to judge the solutions gencrated by the program LOCATE.

2. Test Case Results
a. Double Precision LOCATE versus True Geometry
As stated previously, there are four basic geometries that the program
LOCATE is designed to handle. These four geometries mayv be summarized as:
L +AY. 07 = By < 90°,.G > 0.
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2. -AY,90° < PB(y,) S 180°, G > 0.
+AY,0° S B(yy) < 90°,G < 0.
4. -AY,90° < B(y,) = 180°, G < 0.

Other variations on these geometries are possible by using -AX and -AZ,
but, because the sound-speed profile is assumed to be a function of depth only, the
plane-wave field will propagate in a plane which is normal to the XZ plane [Ref. 1: p.
234]. The result is that variations using -AX and -AZ merely change the sign of the
solutions and not the magnitude. LOCATE was written to accommodate -AX and
-AZ. However, for this discussion, it is sufficient to deal with + AX and +AZ and
realize that only the sign of the answer is different when negative quantities arc used.

Tables 3, 4, 5, and 6 represent results from the four geometries mentioned
above. The sound-speed profile of Figure 2.2 was used in these computations. The
value of AY for each table was maintained constant and this necessitated the altering
of AX depending on the angle P(y;) used. If P(yv,) was close to 0 degrees or
180 degrees, a smaller AX was required than for angles near 90 degrees. This is due to
the fact that at angles near 0 degrees or 180 degrees, the plane-wave field reaches depth

VR in a much shorter AR than when B(yo) is near 90 degrees. Since from equation
2.99

AR? = AX? + AZ?, (2.99)

AX had to be kept sufficiently small to maintain AZ > 0, because we are working with
cases of positive AX and AZ.

As can be seen in Tables 3 through 6, the program LOCATE provides
excellent results. The shght errors that are present are due mainly to roundoff error
occurring in the root finding subroutine ZRPOLY. Note that the constraints
concerning turning points have all been observed in these results. The maximum error
for anyv range calculated by LOCATE in these cases was 0.345 meters. The angles
calculated by LOCATE are not presented in tabular form because they were all
accurate to four significant digits when compared to the true solutions.

Some of the results in Tables 3 through 6 appear to be exact. This is not
actually the case because the values in these tables were all rounded to the third
decimal place. In no instance were the results of LOCATE exactly equal to the true
solution, however, in many instances, the difference was in the fourth or fifth decimal

place.
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TABLE 3
LOCATE VERSUS TRUE GEOMETRY (GEOMETRY 1)

B(¥,) AX (m) AY (m) AZ (m)
T L T L T L
10°  50.000 50.037  300.000  300.000 17.434 17.449
15 50.000 50.017  300.000  299.999 63.096 63.118
20°  100.000 100.033  300.000  299.999 44.287 44.303
25° 100.000 100.017  300.000  299.999 98.212 98.229
30°  100.000 100.015  300.000  300.000 141.879 141.900
35°  100.000 100.017 300000  300.000 185.308 185.340
40°  100.000 100.010  300.000 299999  221.794  231.519
45°  300.000 300.037  300.000  300.000 24.554 24.559
50°  300.000 300.020  300.000  300.000 197.192 197.206
55°  300.000 300.029  300.000  300.000  308.963  309.023
60°  500.000 500.131 300.000  300.001 153.761 153.801
65°  500.000 500.121 300.000  300.001  414.580  414.680
70°  500.000 500.049  300.000  299.976  670.746  670.811
75°  500.000 500.064  300.000  300.001 1035.436 1035.569
§0°  500.000 500.038  300.000  300.001 1741.051 1741.185
85" 500.000 500.019  300.000  300.000 5226.883 5227.089
T = true solution L = LOCATE calculation
G = +0.017 sec’!

b. Errors as a Function of Angle of Transmission and|or Depth Separation

(1) Depth Separation. Figure 3.10 shows the error in RLOS as the depth

separation between the transmitter and the receive arrayv increases, with B(}'O) constant.

There does not seem to be any relation between the error and the depth separation.
The error appears to be mainly caused by roundofT.

(2) Transmission Angle and or Depth Separation. Figure 3.11 shows the
error in RLOS as the angle of transmission changes for four different depth
separations.  Again, it is readily observed that the depth separation has hittle effect on

the size of the error.
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TABLE 4 t ¢
LOCATE VERSUS TRUE GEOMETRY (GEOMETRY 2) | :;.
[
Bvy) AX (m) AY (m) AZ (m) : E:
T L T L T L | ;3
95°  500.000 500.060 -300.000 -299.993 2907.664 2908.009
100°  500.000 500.056  -300.000 -299.985 1536.780 1536.952 g
105 500.000 500.013  -300.000 -299.976  971.804  971.831 -
b 110> 500.000 500.037  -300.000 -300.000  640.734  640.782 :_i_ '
115 500.000 3500.052 -300.000 - 00.000  395.290 395.332 ;
120°  500.000 500.062 -300.000 -300.000  [28.008  128.024 N
h 125 400.000 400.027  -300.000  -300.000 147.308 147.318 ..;
: 130°  300.000 300.129  -300.000  -300.000 191.553 191.637 '\
135°  200.000 200.065 -300.000 -300.000  222.138 111.211 r
140°  200.000 200.022  -300.000 -300.000 151.643 151.660 '
145 200.000 200.051  -300.000  -300.000 62.335 62.353 h
E 150°  100.000 100.072  -300.000 -300.000 140.799 140.901 .:‘.
. 155 100.000 100.062  -300.000  -300.000 97.297 97.338
160°  100.000 100.066 -300.000 -300.000 43.151 43.182 .:
165° 50.000  50.047  -300.000 -300.000 62.552 62.722 ’“_
170° 50.000  50.063  -300.000  -300.000 16.779 16.804 ;E
T = true solution L = LOCATE calculation ‘ L.
G = +0.017 sec! | N
j >
l o ~
-
The error does increase as the angle B(yo) is increased above about ‘:'“
60 degrees. This increase can be attributed to the behavior of the sine and cosine D
functions. Tigure 3.12 shows how the sine and cosine functions behave between 0 and ‘_:
90 degrees. Above about 60 degrees, the slope of the sine function is less than =

0.01 degrees™! so that small changes in the sine cause large differences in the angle Piv).

i T

Also, in this region the magnitude of the slope of the cosine function is near 1ts

maximum. Small changes in the angle B(v) create large differences in the cosine.
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TABLE §
LOCATE VERSUS TRUE GEOMETRY (GEOMETRY 3)
B(s) AX (m) AY (m) AZ (m)
T L T L T L
10° 50.000  49.995 500.000  500.000 72.077 72.071
15° 100.000  99.994  500.000  500.000 88.099 88.094
20°  100.000  99.995 500.000  500.000 150.837 150.830
257 100.000 100.000  500.000  500.000  209.070  209.067
30° 100.000  99.997  500.000  500.000  268.783 268.777
35 300.000 300.004  500.000  500.000 175.431 175.434
40°  300.000 300.001 500.000  500.000  288.241 288.243
45°  300.000 300.009 506.000  500.000  393.838 393.850
50°  500.000 500.008  S500.000  499.999 310.993 310.999
55 500.000 500.006  500.000  499.999  494.933  494.940
60°  500.000 499.979  500.000  500.000  686.650  686.620
65°  500.000 499.976  500.000  500.001 916.323  916.279
70°  500.000 499.997  500.000  500.000 1221.188 1221.181
75°  500.000 499.995  500.000  500.000 1671.182 1671.169
i 80° 3500.000 500.002  500.000  499.999 2426.104 2426.112
l 8§5°  500.000 500.004  500.000  499.998 3902.854 3902.891
| T = true solution L = LOCATE calculation
G = -0.02956 sec’!
L

-----

To find AY, equation 2.11 uses the roots of equation 2.63 as
determuned by ZRPOLY. These roots correspond to sin B(yo). The root contains
some small errors due to roundoff which is borne out by the fact that the values of AY
in Tables 3 through 6 contain errors on the order of 1073 meters. To find AR by using
cquation 2.17, the arc sine of the root must first be calculated. This amplifies any error
in the root, especially when the angle is greater then 60 degrees as discussed previously.
Next, the cosine of the arc sine of the root is computed, which further amplifies the

Crror.
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TABLE 6 '
LOCATE VERSUS TRUE GEOMETRY (GEOMETRY 4)

B(vy) AX (m) AY (m) AZ (m)
T L T L T L

100 500.000 499.998  -500.000 -500.000 3539.164 3539.153
105°  500.000 500.000  500.000 -500.000 1966.455 1966.417
110°  500.000 499.983  -500.000 -500.000 1347.650 1347.606
115°  500.000 3509.000 -500.000 -500.000  983.983  983.992
120°  500.000 499.986 -500.000 -500.000  728.904  728.884
125 500.000 499.961 -500.000 -500.000  §25.292  525.252
130°  3500.000 499.965 -500.000 -500.000  337.478 337.455
1352 500.000 499.980 -500.000 -500.000 71.388 71.389
140°  300.000 299.990 -500.000 -500.000  298.440  298.432
145 300.000 299.979  -500.000  -500.000 185.560 185.548
130°  100.000  99.991 -500.000 -500.000  272.886  272.863
155°  100.000  99.987 -500.000 -500.000  212.229  212.201
160°  100.000  99.990  -500.000 -500.000 153.303 153.288
165 1060.000  99.974  -500.000 -500.000 90.286 90.264
170°  50.000 49.978  -300.000 -500.000 73.210 73.181

T = true solution L = LOCATE calculation

G = -0.02956 sec™!

Therefore, above about 60 degrees, we see these increased errors
manifest themselves in the AR, AX, AZ, and RLOS calculations. Still, the errors scen
in Figure 3.11 and in Tables 3 through 6 are insignificant when compared with the
ranges in question. The angles are still accurate to four significant digits, and
consequently, the range errors remain small.

¢. Double Precision Versus Single Precision Results
[t was found that the single precision version of ZRPOLY was not accurate
enough to calculate the correct answers. The rcason for this can be scen in Table 7
which contains some single precision results for comparison to double precision results.

ZRPOLY calculates the roots shown in the two right hand columns of Table 7. Even
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DP
B(vg)
60.17°
65.21°
70.28°
75.38°
80.60°
86.73°

TABLE 7

SP DP SP

B(v,) RLOS (m) RLOS (m)
60.41° 603.147 9.264
65.44° 715.599  48.291
70.58° 888.832  28.699
75.75° 1188.473  30.835
81.18° 1836.237  57.808

88.34° 5259.514  350.602

G = +0.017 sec’!

DOUBLE PRECISION VERSUS SINGLE PRECISION RESULTS

DP
Root
0.8660
0.9063
0.9397
0.9659
0.9912
0.9961

SP

Root
0.8689
0.9092
0.9428
0.9693
0.9881
0.9997

though the roots appear accurate to the second significant digit in the single precision

results, when dealing with sines and cosines, an error in the third significant digit can

create a fairly large error in calculating the angle B(yo). Also, these roots are multiplied

by the radius of curvature, a, in equation 2.11. This radius of curvature is on the order

of 10° meters, so small errors in the roots will create large errors in the ranges

calculated. The single precision results in Table 7 are so poor that thev seem to have

no relation to the actual answer. The double precision results for RLOS in Table 7 are
accurate to within 0.1 meters of the true solution.
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IV. CONCLUSIONS AND RECOMMENDATIONS

The goal of this thesis was to determine if an underwater acoustic transmitter can
be localized using ray acoustics, model-based phase weights, estimates of the local
angles of arrival, and knowledge of the local sound-speed profile. As demonstrated in
Chapter III, this goal is achievable and to a high degree of accuracy depending on the
accuracy of the inputs to LOCATE. There are restrictions on the use of this
procedure. It appears that the restrictions do not impose severe limitations on the use
of the algorithm, and in some cases it may be possible to overcome them altogether.

All the restrictions basiclly result in a limitation on the effective range of the
algorithm. Even though acoustic signals may not reach their initial turning points for
theoretical ranges in the tens or even hundreds of kilometers, the ocean is only about
1.5 kilometers deep at its greatest depth. Therefore, the ranges shown in Table I are
not realizable in some cases because the signal will reach the ocean floor in less range
than 1t would take to reach the turning point. Additionally, underwater acoustic
transmitters are usually limited in the depth to which they may be deployed, so that the
angles of transmission that are associated with the greatest ranges will pass well below
the receive array at any significant range. Still, the algorithm appears to be quite
useable in ranges of less than 10 kilometers. This would be of a great advantage in the
case of a transmitter whose signal is of low power, resulting in a short detection range.
In fact, the need for an algorithm of this sort is most critical when the transmitter is at
short range and its exact location and direction of motion must be resolved rapidly.

In some instances, the limitations due to turning points may not be of much
concern. For example, the algorithm might be used for an array located on the ocean
floor. In this case, much longer ranges would be achievable, provided that the
transmutter is in the same portion of the sound-speed profile as the receive array. The
algorithm might also be of use in active sonar systems to provide more accurate range
and depth information than is currently available.

Implementation of the algorithm must include a very accurate root finding
technique as has been discussed. Due to the sensitivity of the problem in regard to the
sine and cosine functions, the roots need to be accurate to at lcast three significant
figures. It was found that this is only possible through use of a double precision root

finding subroutine. This, of course, causes the program to run more slowly but,
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because the remainder of the program can still be written in single precision, it is not a
great hinderance.

In the future some areas requiring more study are:

Develop a method for obtaining the model-based phase weights from the
received signals. At present, phase weights are computed based on received
signals, however, the phase weights in the Y direction need to be separated into
traditional phase weights and model-based phase weights.

Determine a method to account for the acoustic signal passing through a
turning point prior to reaching the receive array. This would greatly extend the
range capability of the algorithm.

Develop methods to identify signals that are transmitted from portions of the
sound-speed profile other than the gradient in which the receive array is located.

Investigate the practical applications of the algorithm in varying acoustic
conditions, particularly in regions such as near the Gulf Stream where the
sound-speed profile is a function of depth and range.
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